General Standards Corporation

High Performance Bus Interface Solutions

CCVPX-16AI32SSC1M

32-Channel, Differential, 16-Bit Simultaneous Sampling; Conduction-Cooled VPX Analog Input Board

With 1.0MSPS Sample Rate per Channel, Time-tagging, Low-latency access, and Front-Panel I/O

Features

- 32 Differential analog inputs with dedicated 1.0MSPS 16-Bit ADC per channel
- Sampling rates to 1.0MSPS per channel
- Simultaneous sampling of all inputs; Minimum data skew
- Software-Selectable Input ranges: ±10V, ±5V, ±2.5V or ±1.25V
- Standard conduction-cooled 3U VPX form Factor
- Front-Panel system I/O access
- . Sync and clock I/O support external control and multiboard configurations
- Time Tagging attaches time information to each input data value
- Low Latency provides 32 registers that duplicate the most recent samples from all channels
- · Increased throughput capacity with local data packing
- · Continuous, burst and single-sample clocking modes
- Hardware sync I/O for multiboard operation
- 1 MByte FIFO data buffer; 512 K-Samples in packed-data mode.
- 2-Channel DMA engine
- Conforms to PCI Express Specification revision 1.0a; x1 Link operating at 2.5Gbps
- Sample rate controlled by internal rate generators, by software triggering, or externally
- · On-Demand internal Autocalibration of all channels

Typical Applications

- ✓ High-Density Analog Inputs
- ✓ Analog Event Capture
- ✓ Industrial Robotics
 - ✓ Crash Analysis
- ✓ Acoustic Sensor Arrays
- ✓ Dynamic Test Systems

--- PRELIMINARY ---

Rev: 012617

Functional Description

The conduction-cooled CCVPX-16Al32SSC1M analog input board provides 32 precision 16-Bit analog input channels on a standard 3U VPX module. All 32 inputs can be sampled simultaneously at rates from zero to 1MSPS, and the input range can be software-selected as ±10V, ±5V, ±2.5V or ±1.25V. Each channel contains a dedicated 16-Bit sampling ADC, a differential input amplifier, and selftest input switches. Converted input data is available to the host bus through a 1-MByte FIFO buffer. The 32-Bit local data path supports full D32 local-bus data packing, or data can be accessed through low-latency data registers. Selectable Time Tagging attaches time information to each input data value. The board supports standard conduction-cooling.

Inputs can be sampled in groups of 2, 4, 8, 16 or 32 channels; or any contiguous channel group can be selected for sampling. Triggered bursts are supported. The sample clock can be generated from an internal rate generator, or by software, or by external hardware.

On-demand autocalibration determines offset and gain correction values for each input channel, and applies the corrections subsequently during acquisition. A selftest switching network routes calibration reference signals to each channel through internal selftest switches, and permits board integrity to be verified by the host.

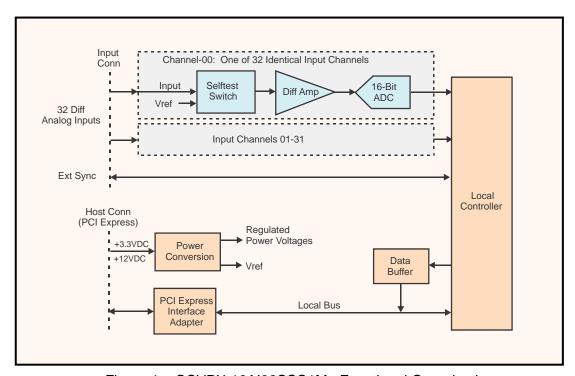


Figure 1. CCVPX-16Al32SSC1M; Functional Organization

This product conforms to the VPX baseline standard ANSI/VITA 46.0-2007 (R2013). System connections are made at the front panel through a high-density front-panel I/O connector. Power requirements consist of +12VDC and +3.3VDC in compliance with the VPX specification, and operation over the specified temperature range is achieved with standard conduction cooling.

Performance Specifications

At +25 °C, with specified operating conditions, and with differential processing deselected

Input Characteristics:

Configuration: 32 differential analog input channels. 16-Channel version available.

Voltage Ranges: Software configurable as ±10V, ±5V, ±2.5V or ±1.25V fullscale

Input Impedance: 2.0 Megohms typical, line-line. 1.0 Megohms line-ground..

Bias Current: 100nA maximum.

Common Mode Rejection: 80dB on ±10V range; 85dB on ±1.25V range; typical, DC-50kHz

Min/Max Input Levels

for rated performance:

±11V

Crosstalk Rejection: 85dB typical, DC-50kHz

Input Noise: 0.4mVRMS, ±10V Range; 0.15mVRMS, ±2.5V Range; typical, 0.01-250kHz

Overvoltage Protection: Sustained ±15 Volts with power removed; ±30V with power applied

Transfer Characteristics:

Conversion Resolution: 16 Bits (0.0015 percent of FSR)
Sample Rate: Zero to 1,000 KSPS per channel

Input Bandwidth (-3dB): DC to 400 kHz typical

Channels per Sample: 1-32

DC Accuracy: Range Zero-Input **Fullscale** (Maximum composite error ± 2.8mv ±10V ± 1.5mv ±5V after autocalibration) ± 1.4mv ± 2.5mv ±2.5V ± 1.1mv ± 1.8mv ±1.25V ± 0.9mv ± 1.6mv

Integral Nonlinearity: ± 0.008 percent of FSR, maximum Differential Nonlinearity: ± 0.004 percent of FSR, maximum

Analog Input Operating Modes and Controls

Input Data Buffer: FIFO; 1 Megabyte. 256 K-Samples in normal (16-Bit) mode; 512 K-samples in

packed-data mode. A 'Low-Latency' array of 32 data registers is available in

addition to the FIFO buffer.

Sample Clock Sources: Internal rate generator; External Hardware Sync I/O, Software clock. Continuous,

Burst and Single-Sample Clocking Modes.

Rate Generator: Two rate generators provide sample rates from 0.016-1,000,000 sample clocks per

second, by dividing the local master clock to the sample rate. (The standard master

clock frequency is 64MHz. See ordering information for custom frequencies.)

External TTL Sync, Clock: Bidirectional TTL lines; available through the I/O connector, or through a 6-pin Sync-

I/O connector located on the back of the board.

Input Data Format: Nonpacked Mode: 16-Bit data word plus single-bit Channel-00 tag.

Packed Mode: Lword sync code followed by packed channel data.

Even-numbered channels occupy lower word (D00-15), odd

channels occupy upper word (D16-31).

Data Format: Selectable as offset binary or two's complement.

Low Latency: In addition to the FIFO buffer, 32 data registers are directly accessible for minimum

latency.

Time Tagging: 48-Bit 1-microsecond time stamping ('tagging') and windowed burst triggering.

Host Bus Compatibility:

Conforms to VPX VITA 46.0.

Also conforms to PCI Express Specification revision 1.0a; x1 Link operating at 2.5Gbps.

DMA transfers as bus master with two DMA channels.

Power Requirements:

+3.3VDC ±0.2 VDC, 1.4 Amps typical, 1.6 Amp maximum.

+12VDC ±0.4 VDC, 0.5 Amps typical, 0.6 Amps maximum

Total power consumption: 10.0 Watts typical, 12.5 Watts maximum.

Mechanical Characteristics

Height: 18.8mm (0.74 in)
Depth: 170.6 mm (6.717 in)
Width: 100.0 mm (3.937 in)

Shield: Side-1 is protected by an EMI shield.

Thermal transfer rails are provided for conduction cooling.

Environmental Specifications

Ambient Temperature Range: Operating: 0 to +80 Degrees Celsius inlet air

Storage: -40 to +85 Degrees Celsius

Relative Humidity: Operating and Storage: 0 to 95%, non-condensing

Altitude: Operation to 10,000 ft.

Cooling: Standard conduction cooling thermal interfaces.

Ordering Information

Specify the basic product model number followed by an option suffix "-A-B-C", as indicated below.

For example, model number CCVPX-16Al32SSC1M-32-64M-0 describes a board with 32 input channels, a standard 64.000MHz master clock frequency, and no custom features.

All versions provide time-tagging and low-latency functions as standard features.

Optional Parameter	Value	Specify Option As:
Number of Input Channels	32 Channels	A = 32
	16 Channels	A = 16
Master Clock Frequency:	64.000 MHz (Standard) B = 64M	
	Specify custom frequency; 64-66 MHz *	B = (Custom frequency)M
Custom Feature	No custom features	C = 0

^{*} Frequencies other than the standard frequency will cause proportionate variations in the sample rate.

System Interface Connector

Table 1. System I/O Connector Pin Functions

Pin	Signal
43	INPUT RTN
42	INPUT RTN
41	INP 00 LO
40	INP 01 LO
39	INP 02 LO
38	INP 03 LO
37	INP 04 LO
36	INP 05 LO
35	INP 06 LO
34	INP 07 LO
33	INPUT RTN
32	INP 08 LO
31	INP 09 LO
30	INP 10 LO
29	INP 11 LO
28	INP 12 LO
27	INP 13 LO
26	INP 14 LO
25	INP 15 LO
24	INPUT RTN
23	INP 16 LO
22	INP 17 LO
21	INP 18 LO
20	INP 19 LO
19	INP 20 LO
18	INP 21 LO
17	INP 22 LO
16	INP 23 LO
15	INPUT RTN
14	INP 24 LO
13	INP 25 LO
12	INP 26 LO
11	INP 27 LO
10	INP 28 LO
9	INP 29 LO
8	INP 30 LO
7	INP 31 LO
6	INPUT RTN
5	DIG RTN
4	DIG RTN
3	DIG RTN
2	DIG RTN
1	DIG RTN

Pin	Signal
85	INPUT RTN
84	INP 00 HI
83	INP 01 HI
82	INP 02 HI
81	INP 03 HI
80	INP 04 HI
79	INP 05 HI
78	INP 06 HI
77	INP 07 HI
76	INPUT RTN
75	INP 08 HI
74	INP 09 HI
73	INP 10 HI
72	INP 11 HI
71	INP 12 HI
70	INP 13 HI
69	INP 14 HI
68	INP 15 HI
67	INPUT RTN
66	INP 16 HI
65	INP 17 HI
64	INP 18 HI
63	INP 19 HI
62	INP 20 HI
61	INP 21 HI
60	INP 22 HI
59	INP 23 HI
58	INPUT RTN
57	INP 24 HI
56	INP 25 HI
55	INP 26 HI
54	INP 27 HI
53	INP 28 HI
52	INP 29 HI
51	INP 30 HI
50	INP 31 HI
49	INPUT RTN
48	DIG RTN
47	CLOCK RST INP
46	REF CLK INP
45	CLOCK I/O 1 or SAMP CLK INP 2
44	SYNC I/O 1 or SAMP CLK OUT 2

¹ Default configuration. Not software-configured for time tagging.

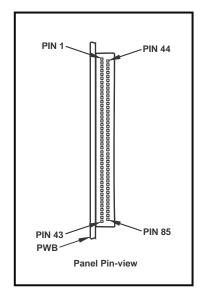


Figure 2. System I/O Connector

System I/O Mating Connector:

Omnetics # MNPO-85-DD-N-EJS-C, dual-row, straight tail. (Assembled cables available)

Table 2. Sync-I/O Pin Functions

SYNC-I/O Conn Pin	Signal
1	DIG RTN
2	AUX CLOCK
3	DIG RTN
4	AUX SYNC
5	DIG RTN
6	Reserved. Connect to INPUT RTN or leave disconnected.

Recommended Sync-I/O mating connector: Molex# 51146-0600.

General Standards Corporation assumes no responsibility for the use of any circuits in this product. No circuit patent licenses are implied. Information included herein supersedes previously published specifications on this product and is subject to change without notice.

² If software-configured for time tagging.