

DN2.80x/81x - hybridNETBOX up to 125 MS/s: Digitizer and AWG

- Stimulus-Response, Closed-Loop, Recorder/Replay, Automated Tests, MIMO, ...
- 2, 4 or 8 channels with 40 MS/s or 125 MS/s in both directions
- Simultaneously sampling and generation on all channels
- 512 MSample acquisition and 512 MSample AWG memory
- Digitizer: single-ended or differential inputs
- Digitizer: separate ADC and amplifier per channel
- Digitizer: 6 input ranges: ±200 mV up to ±10 V
- Digitizer: programmable input offset of ±100%
- AWG: output into 50 Ohm up to ±3 V (8 channels) or ±6 V (2 and 4 channels)
- AWG: output into 1 MOhm up to ±6 V (8 channels) or ±12 V (2 and 4 channels)
- Streaming, Multiple Recording, Gated Sampling, Timestamps, Sequence Replay

- Ethernet Remote Instrument
- LXI Core 2011 compatible
- GBit Ethernet Interface
- Sustained streaming mode up to 70 MB/s
- Direct Connection to PC/Laptop
- Connect anywhere in company LAN
- Embedded Webserver for Maintenance/Updates
- Embedded Server option for open Linux platform

Operating Systems	SBench 6 Professional Included	<u>Drivers</u>
• Windows 7 (SP1), 8, 10, Server 2008 R2 and newer	Acquisition, Generation and Display of analog and digital data	 LabVIEW, MATLAB, LabWindows/CVI Visual C++, C++ Builder, GNU C++,
 Linux Kernel 2.6, 3.x, 4.x, 5.x Windows/Linux 32 and 64 bit 	Calculation, FFTDocumentation and Import, Export	VB.NET, C#, J#, Delphi, Java, Python • IVI

General Information

The hybridNETBOX DN2.80/81x series internally consists of a Digitizer and an AWG that can run together or independently. That allows simultaneous data generation and data acquisition for stimulus-response tests, ATE applications, MIMO applications or closed-loop applications. Used independently, the digitizer can acquire test data in the field and the AWG can replay this test data in lab. The hybridNETBOX offers 16 bit resolution and is available with sampling rates of 40 MS/s and 125 MS/s. The hybridNETBOX can be installed anywhere in the company LAN and can be remotely controlled from a host PC.

	Digitizer			Aı	Internal				
Model	Single-End	ed Inputs	Differentic	Differential Inputs		puts	Outp	Star-Hub	
DN2.813-02	2 channels	40 MS/s	2 channels	40 MS/s	2 channels	40 MS/s	±6V (50Ω)	±12V (1MΩ)	yes ⁽¹⁾
DN2.813-04	4 channels	40 MS/s	4 channels	40 MS/s	4 channels	40 MS/s	±6V (50Ω)	±12V (1MΩ)	yes ⁽¹⁾
DN2.803-08	8 channels	40 MS/s	8 channels	40 MS/s	8 channels	40 MS/s	±3V (50Ω)	±6V (1MΩ)	yes ⁽¹⁾
DN2.816-02	2 channels	125 MS/s	2 channels	125 MS/s	2 channels	125 MS/s	±6V (50Ω)	±12V (1MΩ)	yes ⁽¹⁾
DN2.816-04	4 channels	125 MS/s	4 channels	125 MS/s	4 channels	125 MS/s	±6V (50Ω)	±12V (1MΩ)	yes ⁽¹⁾
DN2.806-08	8 channels 4 channels	80 MS/s 125 MS/s	4 channels	125 MS/s	8 channels 4 channels	80 MS/s 125 MS/s	±3V (50Ω)	±6V (1MΩ)	yes ⁽¹⁾

 SBench 6 does not support star-hub for mixed digitizer and AWG. Instead SBench 6 can only operate the cards independently by starting two instances of the program

Software Support

Windows Support

The digitizerNETBOX/generatorNETBOX/hybridNETBOX can be accessed from Windows 7, Windows 8, Windows 10 (each 32 bit and 64 bit). Programming examples for Visual C++, C++ Builder, LabWindows/CVI, Delphi, Visual Basic, VB.NET, C#, J#, Python, Java and IVI are included.

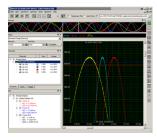
Linux Support

The digitizerNETBOX/generatorNET-

BOX/hybridNETBOX can be accessed from any Linux system. The Linux support includes SMP systems, 32 bit and 64 bit systems, versatile programming examples for

Gnu C++, Python as well as drivers for MATLAB for Linux. SBench 6, the powerful data acquisition and analysis software from Spectrum is also included as a Linux version.

Discovery Protocol


Physical Location	
Bus No	0
Device No	0
Function No	0
Slot No	0
IP	192.168.169.14
VISA	TCPIP[0]::192.168.169.14::inst0::INSTR

The Discovery function helps you to find and identify any Spectrum LXI instruments, like the digitizerNETBOX and generatorNETBOX, avail-

able to your computer on the network. The Discovery function will also locate any Spectrum card products that are managed by an installed Spectrum Remote Server somewhere on the network.

After running the discovery function the card information is cached and can be directly accessed by SBench 6. Furthermore the qualified VISA address is returned and can be used by any software to access the remote instrument.

SBench 6 Professional

The digitizerNETBOX, generator-NETBOX and hybridNETBOX can be used with Spectrum's powerful software SBench 6 – a Professional license for the software is already installed in the box. SBench 6 supports all of the standard features of the instrument. It has a variety of display windows as well as analysis, export and documen-

tation functions.

- Available for Windows Windows 7, Windows 8, Windows 10 and Linux
- Easy to use interface with drag and drop, docking windows and context menus
- Display of analog and digital data, X-Y display, frequency domain and spread signals
- Designed to handle several GBytes of data
- Fast data preview functions
- SBench 6 only supports either AWG or Digitizer in one program
- Star-Hub for mixed mode applications is not supported
- To run AWG and Digitizer with SBench 6, the software needs to be started twice and each instance of the program then operates independetly one device

IVI Driver

The IVI standards define an open driver architecture, a set of instrument classes, and shared software components. Together these provide critical elements needed for instrument interchangeability. IVI's defined Application Programming Interfaces (APIs) standardize common measurement functions reducing the time needed to learn a new IVI instrument.

The Spectrum products to be accessed with the IVI driver can be locally installed data acquisition cards, remotely installed data acquisition cards or remote LXI instruments like

digitizerNETBOX/generatorNETBOX. To maximize the compatibility with existing IVI based software installations, the Spectrum IVI driver supports IVI Scope, IVI Digitizer and IVI FGen class with IVI-C and IVI-COM interfaces.

Third-party Software Products

Most popular third-party software products, such as LabVIEW, MATLAB or LabWindows/CVI are supported. All drivers come with examples and detailed documentation.

Embedded Webserver

Welc

Instru Manu Seria Desci LXI F LXI V Host mDN MAC TCP/I

	He.
ome	
ument Model	DN2.465-08
facturer	Spectrum GmbH
l Number	1234
ription	digitizerNETBOX
eatures	LXI Core 2011
ersion	LXI Device Specification 2011 rev. 1.4
Name	192.168.169.23
S Host Name	digitizerNETBOX.local
Address	0C:C4:7A:B3:C2:A2
IP Address	192.168.169.23
vare Revision	62
vare Revision	5.17.17117

Software Revision 5.17.17117 Instrument Address String [VISA] TCPIP::192.168.169.23::INSTR LAN ID Indicator Enable The integrated webserver follows the LXI standard and gathers information on the product, set up of the Ethernet configuration and current status. It also allows the setting of a con-

and current status. It also allows the setting of a configuration password, access to documentation and updating of the complete instrument firmware, including the embedded remote server and the webserver

General Hardware features and options

LXI Instrument

The digitizerNETBOX and generatorNETBOX are fully LXI instrument compatible to LXI Core 2011 following the LXI Device Specification

2011 rev. 1.4. The digitizerNETBOX/generatorNETBOX has been tested and approved by the LXI Consortium.

Located on the front panel is the main on/off switch, LEDs showing the LXI and Acquisition status and the LAN reset switch.

Chassis features

The chassis is especially desigend for usage in different application arreas and has some advanced features for mobile and shared usage:

- stable metal chassis
- 8 bumper edges protect the chassis, the desk and other components on it. The bumper edges allow to store the chassis either vertically or horizontally and the lock-in structure allows to stack multiple chassis with a secure fit onto each other. For 19" rack mount montage the bumpers can be unmounted and replaced by the 19" rack mount option
- The handle allows to easily carry the chassis around in juts one hand.
- A standard GND screw on the back of the chassis allows to connect the metal chassis to measurement ground to reduce noise based on ground loops and ground level differences.

Front Panel

Standard BNC connectors are used for all analog input or output signals and all auxiliary signals like clock and trigger. No special adapter cables are needed and the connection is secure even when used in a moving environment.

Custom front panels are available

on request even for small series, be it SMA, LEMO connectors or custom specific connectors.

Ethernet Connectivity

The GBit Ethernet connection can be used with standard COTS Ethernet cabling. The integration into a standard LAN allows to connect the digitizerNETBOX/generatorNET-BOX either directly to a desktop PC or Laptop or it is possible to place the instrument somewhere in the

company LAN and access it from any desktop over the LAN.

DC Power Supply Option

The digitizerNETBOX/generatorNET-BOX can be equipped with an internal DC power supply which replaces the standard AC power supply. Two different power supply options are available that range from 9V to 36V. Contact the sales team if other DC levels are required.

Using the DC power supply the digitiz-

erNETBOX/generatorNETBOX can be used for mobile applications together with a Laptop in automotive or airborne applications.

Boot on Power Option

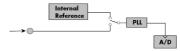
The digitizerNETBOX/generatorNETBOX can be factory configured to automatically start and boot upon availability of the input power rail. That way the instrument will automatically become available again upon loss of input power.

Option Embedded Server

The option turns the digitizer-NETBOX/generatorNETBOX in a powerful PC that allows to run own programs on a small and remote data acquisition system. The digitizerNET-BOX/generatorNETBOX is en-

hanced by more memory, a powerful CPU, a freely accessable internal SSD and a remote software development access method.

The digitizerNETBOX/generatorNETBOX can either run connected to LAN or it can run totally independent, storing data to the internal SSD. The original digitizerNETBOX/generatorNETBOX remote instrument functionality is still 100 % available. Running the embedded server option it is possible to pre-calculate results based on the acquired data, store acquisitions locally and to transfer just the required data or results parts in a client-server based software structure. A different example for the

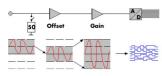

digitizerNETBOX/generatorNETBOX embedded server is surveillance/logger application which can run totally independent for days and send notification emails only over LAN or offloads stored data as soon as it's connected again.

Access to the embedded server is done through a standard text based Linux shell based on the ssh secure shell.

External clock I/O

Using a dedicated connector a sampling clock can be fed in from an external system. It's also possible to output the internally used sampling clock to synchronise external equipment to this clock.

Reference clock



The option to use a precise external reference clock (normally 10 MHz) is necessary to synchronize the instrument for high-quality

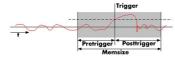
measurements with external equipment (like a signal source). It's also possible to enhance the quality of the sampling clock in this way. The driver automatically generates the requested sampling clock from the fed in reference clock.

Digitizer Hardware Features and Options

Input Amplifier

The analog inputs can be adapted to real world signals using a wide variety of settings that are individual for each channel. By using software commands the input termination can be changed

between 50 Ohm and 1 MOhm, one can select a matching input range and the signal offset can be compensated for.


Differential inputs

With a simple software command the inputs can individually be switched from single-ended (in relation to ground) to differential by combining each two single-ended inputs to one differential input. When the inputs are used in differential mode the A/D converter measures the difference between two lines with relation to system ground.

Automatic on-board calibration

All of the channels are calibrated in factory before the board is shipped. To compensate for different variations like PC power supply, temperature and aging, the software driver provides routines for an automatic onboard offset and gain calibration of all input ranges. All the cards contain a high precision on-board calibration reference.

Ring buffer mode

The ring buffer mode is the standard mode of all oscilloscope instruments. Digitized data is continuously written into a ring memory until a

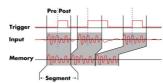
trigger event is detected. After the trigger, post-trigger samples are recorded and pre-trigger samples can also be stored. The number of pre-trigger samples available simply equals the total ring memory size minus the number of post trigger samples.

FIFO mode

The FIFO mode is designed for continuous data transfer between remote instrument and PC memory or hard disk. The control of the data stream is done automatically by the driver on interrupt request. The complete installed on-board memory is used for buffer data, making the continuous streaming extremely reliable.

Channel trigger

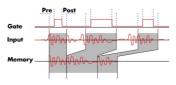
The data acquisition instruments offer a wide variety of trigger modes. Besides the standard signal checking for level and edge as known from oscilloscopes it's also possible to define a window trigger. All trigger modes can be combined with the pulsewidth trigger. This makes it possible to trigger on signal errors like too long or too short pulses. In addition to this a re-arming mode (for accurate trigger recognition on noisy signals) the AND/OR conjunction of different trigger events is possible. As a unique feature it is possible to use deactivated channels as trigger sources.


External trigger I/O

All instruments can be triggered using an external TTL signal. It's possible to use positive or negative edge also in combination with a programmable pulse width. An internally recognised trigger event can - when activated by software - be routed to the trigger connector to start external instruments.

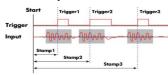
<u>Pulse width</u>

Defines the minimum or maximum width that a trigger pulse must have to generate a trigger event. Pulse width can be combined with channel trigger, pattern trigger and external trigger.


Multiple Recording

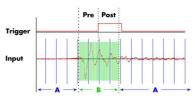
The Multiple Recording mode allows the recording of several trigger events with an extremely short re-arming time. The hardware doesn't need to be restarted in be-

tween. The on-board memory is divided in several segments of the same size. Each of them is filled with data if a trigger event occurs. Pre- and posttrigger of the segments can be programmed. The number of acquired segments is only limited by the used memory and is unlimited when using FIFO mode.


Gated Sampling

The Gated Sampling mode allows data recording controlled by an external gate signal. Data is only recorded if the gate signal has a programmed level. In addition a pre-area before start

of the gate signal as well as a post area after end of the gate signal can be acquired. The number of gate segments is only limited by the used memory and is unlimited when using FIFO mode.


Timestamp

The timestamp function writes the time positions of the trigger events in an extra memory. The timestamps are relative to the start of recording, a defined zero time, ex-

ternally synchronized to a radio clock, an IRIG-B a GPS receiver. Using the external synchronization gives a precise time relation for acquisitions of systems on different locations.

ABA mode

The ABA mode combines slow continuous data recording with fast acquisition on trigger events. The ABA mode works like a slow data logger combined with a fast digitizer. The exact

position of the trigger events is stored as timestamps in an extra memory.

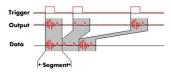
AWG Hardware Features and Options

Singleshot output

When singleshot output is activated the data of the on-board memory is played exactly one time. The trigger source can be either one of the external trigger inputs or the software trigger. After the first trigger additional trigger events will be ignored.

Repeated output

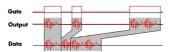
When the repeated output mode is used the data of the on-board memory is played continuously for a programmed number of times or until a stop command is executed. The trigger source can be either one of the external trigger inputs or the software trigger. After the first trigger additional trigger events will be ignored.


Single Restart replay

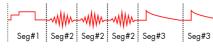
When this mode is activated the data of the on-board memory will be replayed once after each trigger event. The trigger source can be either the external TTL trigger or software trigger.

FIFO mode

The FIFO mode is designed for continuous data transfer between PC memory or hard disk and the generation board. The control of the data stream is done automatically by the driver on an interrupt request basis. The complete installed on-board memory is used for buffering data, making the continuous streaming extremely reliable.


Multiple Replay

The Multiple Replay mode allows the fast output generation on several trigger events without restarting the hardware. With this option very fast repetition rates can be


achieved. The on-board memory is divided into several segments of the same size. Each segment can contain different data which will then be played with the occurrence of each trigger event.

Gated Replay

programmed level.

Sequence Mode

by an external gate signal. Data is only replayed if the gate signal has attained a

The Gated Sampling mode allows data replay controlled

> The sequence mode allows to split the card memory into sev-

eral data segments of different length. These data segments are chained up in a user chosen order using an additional sequence memory. In this sequence memory the number of loops for each segment can be programmed and trigger conditions can be defined to proceed from segment to segment. Using the sequence mode it is also possible to switch between replay waveforms by a simple software command or to redefine waveform data for segments simultaneously while other segments are being replayed. All triggerrelated and software-command-related functions are only working on single cards, not on star-hub-synchrnonized cards.

External trigger input

All boards can be triggered using up to two external analog or digital signals. One external trigger input has two analog comparators that can define an edge or window trigger, a hysteresis trigger or a rearm trigger. The other input has one comparator that can be used for standard edge and level triggers.

hybridNETBOX Technical Data - Digitizer

Analog Inputs

Resolution Input Range	software programmable	16 bit (can be reduced ±200 mV, ±500 mV, ±	
Input Type	software programmable	±200 mV, ±300 mV, ± Single-ended or True Di	
Input Offset (single-ended)	software programmable	•	1% of input range in steps of 1%
ADC Differential non linearity (DNL)	ADC only		±0.2/±0.8 LSB (typ./max.)
		592x:	±0.2/±0.8 LSB (typ./max.)
		593x, 8x3:	±0.5/±0.9 LSB (typ./max.)
		594x: 596x, 8x6:	±0.5/±0.9 LSB (typ./max.) ±0.5/±0.9 LSB (typ./max.
ADC Integral non linearity (INL)	ADC only		±1.0/±2.3 LSB (typ./max.)
	, 2 C Ciny	592x:	±1.0/±2.3 LSB (typ./max.)
		593x, 803, 813:	±2.0/±7.5 LSB (typ./max.)
		594x: 596x, 806, 816:	±2.0/±7.5 LSB (typ./max.) ±2.0/±7.5 LSB (typ./max.)
Offset error (full speed), DC signal	after warm-up and calibration	≤ 0.1% of range	
Gain error (full speed), DC signal	after warm-up and calibration	≤ 0.1% of reading	
AC accuracy	1 kHz signal	≤ 0.3% of reading	
AC accuracy	50 kHz signal	≤ 0.5% of reading	
Crosstalk: Signal 1 MHz, 50 Ω	range ≤ ±1V	≤ 95 dB on adjacent ch	annels
	range ≥ ±2V	≤ 90 dB on adjacent ch	
Crosstalk: Signal 10 MHz, 50 Ω	range $\leq \pm 1V$	≤ 87 dB on adjacent ch	annels
0	$range \ge \pm 2V$	≤ 85 dB on adjacent ch	annels
Analog Input impedance	software programmable	50 Ω /1 MΩ 30 pF	
Analog input coupling	fixed	DC	
Over voltage protection	$range \le \pm 1V$	±5 V (1 MΩ), 3.5 Vrms	s (50 Ω)
Over voltage protection	$range \ge \pm 2V$	±50 V (1 MΩ), 5 Vrms	(50 Ω)
Anti-Aliasing Filter (digital filtering active)	591x (5 MS/s)	Digital Anti-Aliasing filte	er at 40% of sampling rate. Examples:
		5 MS/s sampling rate -:	> anit-aliasing filter at 2 MHz
A state a material to the D			> anti-aliasing filter at 400 kHz
Anti-Aliasing Filter (standard)	591x (5 MS/s) 592x (20 MS/s)	fixed 2.5 MHz 3rd orde fixed 10 MHz 3rd orde	
	593x (40 MS/s)	fixed 20 MHz 3rd orde	
	594x (80 MS/s)	fixed 40 MHz 3rd orde	
	596x (125 MS/s)	fixed 60 MHz 3rd orde	
CMRR (Common Mode Rejection Ratio)	range $\leq \pm 1V$		Iz: 60 dB, 10 MHz: 40 dB
CMRR (Common Mode Rejection Ratio)	$range \ge \pm 2V$		Iz: 52 dB, 10 MHz: 50 dB
Maximum Common Mode Voltage Differential Input	Input Range	±200 mV ±500 mV	
	VCM	±900 mV ±2.25 V	±2.25 V ±9 V ±22.5 V ±22.5 V
· · · · · · · · · · · · · · · · · · ·	ft		u su insura is un stat de ser de st
Channel selection (single-ended inputs) Channel selection (true differential inputs)	software programmable software programmable	1, 2, 4 or 8 channels (r	naximum is model dependent) kimum is model dependent)
Channel selection (single-ended inputs) Channel selection (true differential inputs) rigger	software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (max	kimum is model dependent)
Channel selection (single-ended inputs) Channel selection (true differential inputs)	· · ·	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (max	
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes	software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (max Channel Trigger, Extern	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay
Channel selection (single-ended inputs) Channel selection (true differential inputs) T rigger Available trigger modes Trigger level resolution	software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (max Channel Trigger, Extern 14 bit	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay je or both edges
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes Trigger level resolution Trigger edge	software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (max Channel Trigger, Extern 14 bit Rising edge, falling edg	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay je or both edges a steps of 1 sample
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes Trigger level resolution Trigger edge Trigger pulse width	software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (max Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay ge or both edges a steps of 1 sample a steps of 1 samples
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay	software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (max Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay je or both edges a steps of 1 sample a steps of 1 samples
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate)	software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (max Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 4 0 samples (+ progra 8 up to [32 kSamples /	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay ge or both edges a steps of 1 sample a steps of 1 samples a steps of 1 samples immed pretrigger + programmed holdoff) i number of active channels] in steps of 8
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time	software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (max Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 4 0 samples (+ progra 8 up to [32 kSamples /	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay ge or both edges a steps of 1 sample a steps of 1 samples a steps of 1 samples ummed pretrigger + programmed holdoff)
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO	software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (max Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir < 40 samples (+ progra 8 up to [32 kSamples / 8 up to [8G - 4] sample	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay ge or both edges a steps of 1 sample a steps of 1 samples a steps of 1 samples immed pretrigger + programmed holdoff) i number of active channels] in steps of 8
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Posttrigger	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (max Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 8 up to [22 KSamples / 8 up to [32 KSamples / 8 up to [36 - 4] sample 16 up to [installed mem	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay ge or both edges a steps of 1 sample a steps of 1 samples a steps of 1 samples a steps of 1 samples a mmed pretrigger + programmed holdoff) a number of active channels] in steps of 8 as in steps of 8 (defining pretrigger in standard scope mode)
Channel selection (single-ended inputs) Channel selection (true differential inputs) Irigger Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger delay Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Posttrigger Memory depth	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (max Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 8 up to [22 KSamples / 8 up to [32 KSamples / 8 up to [36 - 4] sample 16 up to [installed mem	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay ge or both edges a steps of 1 sample a steps of 1 samples in steps of 1 samples immed pretrigger + programmed holdoff) i number of active channels] in steps of 8 es in steps of 8 (defining pretrigger in standard scope mode) iory / number of active channels] samples in steps of 8
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Posttrigger Memory depth Multiple Recording/ABA segment size	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (max Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir < 40 samples (+ progra 8 up to [32 kSamples / 8 up to [8G - 4] sample 16 up to [installed memo 1 sample	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay ge or both edges a steps of 1 sample a steps of 1 samples a steps of 1 samples immed pretrigger + programmed holdoff) i number of active channels] in steps of 8 as in steps of 8 (defining pretrigger in standard scope mode) pory / number of active channels] samples in steps of 8
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Posttrigger Memory depth Multiple Recording/ABA segment size Internal/External trigger accuracy	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (max Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir < 40 samples (+ progra 8 up to [32 kSamples / 8 up to [32 kSamples / 8 up to [installed memo 1 sample Standard, Startreset, ex	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay ge or both edges a steps of 1 sample a steps of 1 samples a steps of 1 samples insteps of 1 samples insteps of 3 cative channels] in steps of 8 so in steps of 8 (defining pretrigger in standard scope mode) fory / number of active channels] samples in steps of 8 ry / number of active channels] samples in steps of 8 ternal reference clock on X1 (e.g. PPS from GPS, IRIG-B)
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Posttrigger Memory depth Multiple Recording/ABA segment size Internal/External trigger accuracy	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (max Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir < 40 samples (+ progra 8 up to [32 kSamples / 8 up to [32 kSample 16 up to [installed memo 1 sample Standard, Startreset, ex Std., Startreset: 6-	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay ge or both edges a steps of 1 sample a steps of 1 samples a steps of 1 samples insteps of 1 samples immed pretrigger + programmed holdoff) 'number of active channels] in steps of 8 ses in steps of 8 (defining pretrigger in standard scope mode) iory / number of active channels] samples in steps of 8 ry / number of active channels] samples in steps of 8 ternal reference clock on X1 (e.g. PPS from GPS, IRIG-B) 4 bit counter, increments with sample clock (reset manually or on star
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Posttrigger Memory depth Multiple Recording/ABA segment size Internal/External trigger accuracy	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (maximum) Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 40 samples (+ progra 8 up to [32 KSamples / 8 up to [installed memo 1 sample Standard, Startreset; A RefClock; 22	kimum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay ge or both edges a steps of 1 sample a steps of 1 samples insteps of 1 samples immed pretrigger + programmed holdoff) number of active channels] in steps of 8 is in steps of 8 (defining pretrigger in standard scope mode) iory / number of active channels] samples in steps of 8 ry / number of active channels] samples in steps of 8 ternal reference clock on X1 (e.g. PPS from GPS, IRIG-B) 4 bit counter, increments with sample clock (reset manually or on star 4 bit upper counter (increment with RefClock)
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Posttrigger Memory depth Multiple Recording/ABA segment size Internal/External trigger accuracy	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (maximum) Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir < 40 samples (+ progra 8 up to [32 kSamples / 8 up to [32 kSamples / 8 up to [6G - 4] sample 16 up to [installed memo 1 sample Standard, Startreset; ex Std., Startreset: 6- RefClock: 2	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay ge or both edges a steps of 1 sample a steps of 1 samples insteps of 1 samples immed pretrigger + programmed holdoff) number of active channels] in steps of 8 is in steps of 8 (defining pretrigger in standard scope mode) iory / number of active channels] samples in steps of 8 ry / number of active channels] samples in steps of 8 ternal reference clock on X1 (e.g. PPS from GPS, IRIG-B) 4 bit counter, increments with sample clock (reset manually or on star 4 bit upper counter (increment with RefClock)
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes Trigger level resolution Trigger level resolution Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Posttrigger Memory depth Multiple Recording/ABA segment size Internal/External trigger accuracy Timestamp modes Data format	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (maximum) Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir < 40 samples (+ progra 8 up to [32 kSamples / 8 up to [32 kSamples / 8 up to [6G - 4] sample 16 up to [installed memo 1 sample Standard, Startreset; ex Std., Startreset: 6- RefClock: 2	kimum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay ge or both edges a steps of 1 sample a steps of 1 samples a steps of 1 samples immed pretrigger + programmed holdoff) inumber of active channels] in steps of 8 is in steps of 8 [defining pretrigger in standard scope mode) iory / number of active channels] samples in steps of 8 ry / number of active channels] samples in steps of 8 ternal reference clock on X1 (e.g. PPS from GPS, IRIG-B) 4 bit counter, increments with sample clock (reset manually or on star 4 bit upper counter (increment with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock)
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Posttrigger Memory depth Multiple Recording/ABA segment size Internal/External trigger accuracy Timestamp modes Data format Extra data Size per stamp	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (maximum) Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir < 40 samples (+ progra 8 up to [32 kSamples / 8 up to [32 kSamples / 8 up to [8G - 4] sample 16 up to [installed memo 1 sample Standard, Startreset; 60 RefClock; 24 none, acquisition of X1, 128 bit = 16 bytes	kimum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay ge or both edges a steps of 1 sample a steps of 1 samples a steps of 1 samples insteps of 1 samples insteps of 3 addining pretrigger in standard scope mode) fory / number of active channels] in steps of 8 is in steps of 8 (defining pretrigger in standard scope mode) fory / number of active channels] samples in steps of 8 ternal reference clock on X1 (e.g. PPS from GPS, IRIG-B) 4 bit counter, increments with sample clock (reset manually or on star 4 bit upper counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock/ X2/X3 inputs at trigger time, trigger source (for OR trigger)
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Posttrigger Memory depth Multiple Recording/ABA segment size Internal/External trigger accuracy Timestamp modes Data format Extra data Size per stamp External trigger	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (maximum) Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir < 40 samples (+ progra 8 up to [32 kSamples / 8 up to [32 kSamples / 8 up to [8G - 4] sample 16 up to [installed memo 1 sample Standard, Startreset, ex Std., Startreset: 6. RefClock: 2. 4th none, acquisition of X1, 128 bit = 16 bytes Ext	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay te or both edges a steps of 1 sample a steps of 1 samples a steps of 1 samples insteps of 3 samples insteps of 3 cative channels] in steps of 8 so in steps of 8 (defining pretrigger in standard scope mode) tory / number of active channels] samples in steps of 8 ternal reference clock on X1 (e.g. PPS from GPS, IRIG-B) 4 bit counter, increments with sample clock (reset manually or on star 4 bit upper counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 1 bit lower counter (increments with sample clock, reset with RefClock) 2 bit lower counter (increments with sample clock, reset with RefClock) 2 bit lower counter (increments with sample clock, reset with RefClock) 3 bit lower counter (increments with sample clock, reset with RefClock) 3 bit lower counter (increments with sample clock, reset with RefClock) 4 bit upper counter (increments with sample clock, reset with RefClock) 4 bit upper counter (increments with sample clock, reset with RefClock) 5 bit lower counter (increments with sample clock, reset with RefClock) 5 bit lower counter (increments with sample clock, reset with RefClock) 5 bit lower counter (increments with sample clock, reset with RefClock) 5 bit lower counter (increments with sample clock, reset with RefClock) 5 bit lower counter (increments with sample clock, reset with RefClock) 5 bit lower counter (increments with sample clock, reset with RefClock) 5 bit lower counter (increments with sample clock, reset with RefClock) 5 bit lower counter (increments with sample clock) 5 bit lower counter (increme
Channel selection (single-ended inputs) Channel selection (true differential inputs) Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Postrigger Memory depth Multiple Recording/ABA segment size Internal/External trigger accuracy Timestamp modes Data format Extra data Size per stamp External trigger External trigger type	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (maximum) Channel Trigger, Extern 14 bit Rising edge, falling edge 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples / + progra 8 up to [32 kSamples / 4 8 up to [8G - 4] sample 16 up to [installed memo 1 sample Standard, Startreset; 60: RefClock: 24: 44: none, acquisition of X1, 128 bit = 16 bytes Ext Single level comparator	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay te or both edges a steps of 1 sample a steps of 1 samples a steps of 1 samples to steps of 1 samples to steps of 1 samples in steps of 3 (defining pretrigger in standard scope mode) tory / number of active channels] in steps of 8 si in steps of 8 (defining pretrigger in standard scope mode) tory / number of active channels] samples in steps of 8 ternal reference clock on X1 (e.g. PPS from GPS, IRIG-B) 4 bit counter, increments with sample clock (reset manually or on star 4 bit upper counter (increment with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock (X2/X3 inputs at trigger time, trigger source (for OR trigger) X1, X2, X3 3.3V LVTTL logic inputs
Channel selection (single-ended inputs) Channel selection (true differential inputs) Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Posttrigger Memory depth Multiple Recording/ABA segment size Internal/External trigger accuracy Timestamp modes Data format Extra data Size per stamp External trigger External trigger type External trigger impedance	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (maximum) Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir < 40 samples (+ progra 8 up to [32 kSamples / 8 up to [32 kSamples / 8 up to [8G - 4] sample 16 up to [installed memo 1 sample Standard, Startreset, ex Std., Startreset: 6. RefClock: 2. 4th none, acquisition of X1, 128 bit = 16 bytes Ext	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay ge or both edges a steps of 1 sample a steps of 1 samples is steps of 1 samples immed pretrigger + programmed holdoff) number of active channels] in steps of 8 is in steps of 8 (defining pretrigger in standard scope mode) fory / number of active channels] samples in steps of 8 ternal reference clock on X1 (e.g. PPS from GPS, IRIG-B) 4 bit counter, increments with sample clock (reset manually or on star 4 bit upper counter (increment with RefClock) 0 bit lower counter (increments with sample clock, reset with RefCloc (X2/X3 inputs at trigger time, trigger source (for OR trigger) X1, X2, X3 3.3Y LVTTL logic inputs For electrical specifications refer to
Channel selection (single-ended inputs) Channel selection (true differential inputs) Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Postrigger Memory depth Multiple Recording/ABA segment size Internal/External trigger accuracy Timestamp modes Data format Extra data Size per stamp External trigger External trigger type	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (maximum) Channel Trigger, Extern 14 bit Rising edge, falling edge 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples / + progra 8 up to [32 kSamples / 4 8 up to [8G - 4] sample 16 up to [installed memo 1 sample Standard, Startreset; 60: RefClock: 24: 44: none, acquisition of X1, 128 bit = 16 bytes Ext Single level comparator	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay te or both edges a steps of 1 sample a steps of 1 samples a steps of 1 samples insteps of 3 samples insteps of 3 cative channels] in steps of 8 ternal reference clock on X1 (e.g. PPS from GPS, IRIG-B) 4 bit counter, increments with sample clock (reset manually or on star 4 bit upper counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 10 bit lower counter (increments with sample clock, reset with RefClock) 10 bit lower counter (increments with sample clock, reset with RefClock) 10 bit lower counter (increments with sample clock, reset with RefClock) 10 bit lower counter (increments with sample clock, reset with RefClock) 10 bit lower counter (increments with sample clock, reset with RefClock) 10 bit lower counter (increments with sample clock, reset with RefClock) 10 bit lower counter (increments with sample clock, reset with RefClock) 10 bit lower counter (increments with sample clock, reset reset with RefClock) 10 bit lower counter (increments with sample clock, reset reset with RefClock) 10 bit lower counter (increments with sample clock, reset with RefClock) 10 bit lower counter (increments with sample clock, reset with RefClock) 10 bit lower counter (increments with sample clock, reset with RefClock) 10 bit lower counter (increments with sample clock) 10 bit lowe
Channel selection (single-ended inputs) Channel selection (true differential inputs) Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Posttrigger Memory depth Multiple Recording/ABA segment size Internal/External trigger accuracy Timestamp modes Data format Extra data Size per stamp External trigger External trigger type External trigger impedance	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (maximum) Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir < 40 samples (+ progra 8 up to [32 kSamples / 8 up to [installed memo 1 sample Standard, Startreset, ex Std., Startreset: 6. RefClock: 2. 40 none, acquisition of X1, 128 bit = 16 bytes Ext Single level comparator 50 Ω / 5 kΩ	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay te or both edges a steps of 1 sample a steps of 1 samples a steps of 1 samples insteps of 1 samples immed pretrigger + programmed holdoff) inumber of active channels] in steps of 8 is in steps of 8 (defining pretrigger in standard scope mode) iory / number of active channels] samples in steps of 8 ternal reference clock on X1 (e.g. PPS from GPS, IRIG-B) 4 bit counter, increments with sample clock (reset manually or on stat 4 bit upper counter (increment with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock) 0 bit lower counter (increments with sample clock) 1 bit lower counter (increments with sample clock)
Channel selection (single-ended inputs) Channel selection (true differential inputs) Trigger Available trigger modes Trigger level resolution Trigger level resolution Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Posttrigger Memory depth Multiple Recording/ABA segment size Internal/External trigger accuracy Timestamp modes Data format External trigger External trigger External trigger impedance External trigger input level External trigger over voltage protection External trigger sensitivity	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (maximum channels) Channel Trigger, Extern 14 bit Rising edge, falling edge 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 40 samples (+ progra 8 up to [32 kSamples / 8 up to [8G - 4] sample 16 up to [installed memo 1 sample Standard, Startreset; 60 RefClock; 24 inone, acquisition of X1, 128 bit = 16 bytes Ext Single level comparator 50 Ω / 5 k Ω ±5 V (5 k Ω), ±2.5 V (5	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay te or both edges a steps of 1 sample a steps of 1 samples a steps of 1 samples insteps of 1 samples insteps of 3 cative channels] in steps of 8 so in steps of 8 (defining pretrigger in standard scope mode) iory / number of active channels] samples in steps of 8 ternal reference clock on X1 (e.g. PPS from GPS, IRIG-B) 4 bit counter, increments with sample clock (reset manually or on star 4 bit upper counter (increment with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock (X2/X3 inputs at trigger time, trigger source (for OR trigger) X1, X2, X3 3.3V LVTTL logic inputs For electrical specifications refer to "Multi Purpose I/O lines" section.
Channel selection (single-ended inputs) Channel selection (true differential inputs) Channel selection (true differential inputs) Trigger Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate, FIFO Posttrigger Memory depth Multiple Recording/ABA segment size Internal/External trigger accuracy Timestamp modes Data format External trigger External trigger type External trigger impedance External trigger impedance External trigger over voltage protection External trigger sensitivity (minimum required signal swing)	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (maximum channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir 0 to [4G - 1] samples ir < 40 samples (+ prograd 8 up to [32 kSamples / 4] sample 16 up to [8G - 4] sample 16 up to [installed memo 1 sample Standard, Startreset: 64 RefClock: 24 none, acquisition of X1, 128 bit = 16 bytes Ext Single level comparator 50 $\Omega / 5 k\Omega$ ±5 V (5 k Ω), ±2.5 V (5 ±20 V (5 k Ω), 5 Vrms (200 mVpp	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay te or both edges a steps of 1 sample a steps of 1 samples a steps of 1 samples insteps of 1 samples insteps of 3 cative channels] in steps of 8 so in steps of 8 (defining pretrigger in standard scope mode) iory / number of active channels] samples in steps of 8 ternal reference clock on X1 (e.g. PPS from GPS, IRIG-B) 4 bit counter, increments with sample clock (reset manually or on star 4 bit upper counter (increment with RefClock) 0 bit lower counter (increments with sample clock, reset with RefCloc /X2/X3 inputs at trigger time, trigger source (for OR trigger) X1, X2, X3 3.3V LVTTL logic inputs For electrical specifications refer to "Multi Purpose I/O lines" section.
Channel selection (single-ended inputs) Channel selection (true differential inputs) Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Posttrigger Memory depth Multiple Recording/ABA segment size Internal/External trigger accuracy Timestamp modes Data format External trigger External trigger External trigger impedance External trigger impedance External trigger over voltage protection External trigger sensitivity (minimum required signal swing) External trigger level	software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (maximum channels) Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [2G - 1] samples / 8 up to [3G - 4] samples / 8 up to [3G - 4] sample 16 up to [installed memo 1 sample Standard, Startreset: 6. RefClock: 2. 44 none, acquisition of X1, 128 bit = 16 bytes Ext Single level comparator 50 $\Omega / 5 k\Omega$ $\pm 5 V (5 k\Omega), \pm 2.5 V (5 \pm 20 V (5 k\Omega), 5 Vrms (200 mVpp)$ $\pm 5 V in steps of 1 mV$	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay te or both edges a steps of 1 sample a steps of 1 samples a steps of 1 samples insteps of 1 samples insteps of 3 cative channels] in steps of 8 so in steps of 8 (defining pretrigger in standard scope mode) iory / number of active channels] samples in steps of 8 ternal reference clock on X1 (e.g. PPS from GPS, IRIG-B) 4 bit counter, increments with sample clock (reset manually or on star 4 bit upper counter (increment with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock) 1 bit counter (increments with sample clock) 1 bit counter (increments with sample clock) 2 bit counter (increments with sample clock) 2
Channel selection (single-ended inputs) Channel selection (true differential inputs) Channel selection (true differential inputs) Trigger Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate, FIFO Posttrigger Memory depth Multiple Recording/ABA segment size Internal/External trigger accuracy Timestamp modes Data format External trigger External trigger type External trigger impedance External trigger impedance External trigger over voltage protection External trigger sensitivity (minimum required signal swing)	software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (maximum channels) Channel Trigger, Extern 14 bit Rising edge, falling edge 0 to [4G - 1] samples ir 0 to [20 samples (+ progra 8 up to [32 Ksamples / 8 up to [18 channels (- 4] sample 16 up to [installed memo 1 sample Standard, Startreset: 6. RefClock: 2. 44 none, acquisition of X1, 128 bit = 16 bytes Ext Single level comparator 50 Ω / 5 k Ω ±5 V (5 k Ω), ±2.5 V (5 ±20 V (5 k Ω), 5 Vrms (200 mVpp ±5 V in steps of 1 mV DC to 400 MHz	ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay te or both edges in steps of 1 sample in steps of 1 samples in steps of 1 samples insteps of 1 samples the steps of 3 cative channels] in steps of 8 is in steps of 8 (defining pretrigger in standard scope mode) tory / number of active channels] samples in steps of 8 ternal reference clock on X1 (e.g. PPS from GPS, IRIG-B) 4 bit counter, increments with sample clock (reset manually or on star 4 bit upper counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock) 0 Dit lower counter (increments with sample clock, reset with RefClock) 0 Dit lower counter (increments with sample clock, reset with RefClock) 0 Dit lower counter (increments with sample clock, reset with RefClock) 0 Dit lower counter (increments with sample clock, reset with RefClock) 0 Dit lower counter (increments with sample clock, reset with RefClock) 0 Dit lower counter (increments with sample clock, reset with RefClock) 0 Dit lower counter (increments with sample clock, reset with RefClock) 0 Dit lower counter (increments with sample clock) 0 Dit lower counter (increments with sample
Channel selection (single-ended inputs) Channel selection (true differential inputs) Available trigger modes Trigger level resolution Trigger edge Trigger pulse width Trigger delay Trigger holdoff (for Multi, ABA, Gate) Multi, ABA, Gate: re-arming time Pretrigger at Multi, ABA, Gate, FIFO Posttrigger Memory depth Multiple Recording/ABA segment size Internal/External trigger accuracy Timestamp modes Data format External trigger External trigger External trigger impedance External trigger impedance External trigger over voltage protection External trigger sensitivity (minimum required signal swing) External trigger level	software programmable software programmable	1, 2, 4 or 8 channels (r 1, 2 or 4 channels (maximum channels) Channel Trigger, Extern 14 bit Rising edge, falling edg 0 to [4G - 1] samples ir 0 to [2G - 1] samples / 8 up to [3G - 4] samples / 8 up to [3G - 4] sample 16 up to [installed memo 1 sample Standard, Startreset: 6. RefClock: 2. 44 none, acquisition of X1, 128 bit = 16 bytes Ext Single level comparator 50 $\Omega / 5 k\Omega$ $\pm 5 V (5 k\Omega), \pm 2.5 V (5 \pm 20 V (5 k\Omega), 5 Vrms (200 mVpp)$ $\pm 5 V in steps of 1 mV$	<pre>ximum is model dependent) al, Software, Window, Pulse, Re-Arm, Spike, Or/And, Delay te or both edges tasteps of 1 sample tasteps of 1 samples tasteps of 1 samples tasteps of 1 samples tasteps of 8 (defining pretrigger in standard scope mode) tory / number of active channels] samples in steps of 8 ternal reference clock on X1 (e.g. PPS from GPS, IRIG-B) 4 bit counter, increments with sample clock (reset manually or on start 4 bit upper counter (increment with RefClock) 0 bit lower counter (increments with sample clock, reset with RefClock /X2/X3 inputs at trigger time, trigger source (for OR trigger) X1, X2, X3 3.3V LVTTL logic inputs For electrical specifications refer to "Multi Purpose I/O lines" section. 50 Ω)</pre>

Multi Purpose I/O lines

Number of multi purpose input/output lines three, named X1, X2, X3 Multi Purpose line X0 X1, X2, X3 Input: available signal types software programmable n.a. Synchronous Digital-In, Asynchronous Digital-In, Timestamp Reference Clock, Logic trigger Input: signal levels n.a. 3.3 V LVTTL	,
Input: available signal types software programmable n.a. Synchronous Digital-In, Asynchronous Digital-In, Asynchronous Digital-In Timestamp Reference Clock, Logic trigger	,
Timestamp Reference Clock, Logic trigger	,
Input: signal levels n.a. 3.3 V LVTTL	
Input: impedance n.a. 10 kΩ to 3.3 V	
Input: maximum voltage level n.a0.5 V to +4.0 V	
Input: maximum bandwidth n.a. 125 MHz	
Output: available signal types software programmable Run-, Arm-, Trigger-Output, Run-, Arm-, Trigger-Output, Asynchronous Digital-Out, Asynchronous Digital-Out, ADC Clock Output	
Output: impedance 50 Ω	
Output: drive strength Capable of driving 50 Ω loads, maximum drive strength ±48 mA	
Output: type / signal levels 3.3V LVTTL, TTL compatible for high impedance loads	
Output: update rate (synchronous modes) sampling clock	
Clock	
Clock Modes software programmable internal PLL, external clock, external reference clock, sync	
Internal clock range (PLL mode) software programmable see "Clock imitations and Bandwidh" table below	
Internal clock accuracy after warm-up ≤ ±1.0 ppm (at time of calibration in production)	
Internal clock aging ≤ ±0.5 ppm / year	
PLL clock setup granularity (int. or ext. reference) 1 Hz	
External reference clock range software programmable 128 kHz up to 125 MHz	
Direct external clock to internal clock delay 4.3 ns	
Direct external clock range see "Clock Limitations and Bandwidth" table below	
Direct external clock minimum LOW/HIGH time see "Clock Limitations and Bandwidth" table below	
External clock type Single level comparator	
External clock input level $\pm 5 \lor (5 \text{ k}\Omega), \pm 2.5 \lor (50 \Omega),$	
External clock input impedance software programmable $50 \Omega / 5 k\Omega$	
External clock over voltage protection $\pm 20 \text{ V}$ (5 k Ω), 5 Vrms (50 Ω)	
External clock sensitivity 200 mVpp (minimum required signal swing)	
External clock level software programmable ±5 V in steps of 1mV	
External clock edge rising edge used	
External reference clock input duty cycle 45% - 55%	
Clock output electrical specification Available via Multi Purpose output X0. Refer to "Multi Purpose I/O lines" section.	
Synchronization clock multiplier "N" for different clocks on synchronized cards software programmable N being a multiplier (1, 2, 3, 4, 5, Max) of the card with the currently slowest sampling of The card maximum (see "Clock Limitations and Bandwidth" table below) must not be exceeded by the card maximum (see "Clock Limitations and Bandwidth" table below) must not be exceeded by the card maximum (see "Clock Limitations and Bandwidth" table below) must not be exceeded by the card maximum (see "Clock Limitations and Bandwidth" table below) must not be exceeded by the card maximum (see "Clock Limitations").	
ABA mode clock divider for slow clock software programmable 8 up to (64k - 8) in steps of 8	
Channel to channel skew on one card < 200 ps (typical)	
Skew between star-hub synchronized cards < 100 ps (typical)	

Clock Limitations and Bandwidth

	M2p.591x, DN2.591-xx DN6.591-xx	M2p.592x, DN2.592-xx DN6.592-xx	M2p.593x DN2.593-xx DN6.593-xx DN2.803-xx DN2.813-xx	M2p.594x	M2p.596x DN2.596-xx DN6.596-xx DN2.806-xx DN2.816-xx
max internal clock (non-synchronized cards)	5 MS/s	20 MS/s	40 MS/s	80 MS/s	125 MS/s
min internal clock (non-synchronized cards)	1 kS/s	1 kS/s	1 kS/s	1 kS/s	1 kS/s
max internal clock (cards synchronized via star-hub)	5 MS/s	20 MS/s	40 MS/s	80 MS/s	125 MS/s
min internal clock (cards synchronized via star-hub)	128 kS/s	128 kS/s	128 kS/s	128 kS/s	128 kS/s
max direct external clock	5 MS/s	20 MS/s	40 MS/s	80 MS/s	125 MS/s
min direct external clock	1 MS/s	1 MS/s	1 MS/s	1 MS/s	1 MS/s
min direct external clock LOW time	25 ns	25 ns	4 ns	4 ns	4 ns
min direct external clock HIGH time	25 ns	25 ns	4 ns	4 ns	4 ns
-3 dB analog input bandwidth	> 2.0 MHz	> 10 MHz	> 20 MHz	> 40 MHz	> 60 MHz
-3 dB analog input bandwidth, digital filter de-activated	> 2.5 MHz	n.a.	n.a.	n.a.	n.a.

RMS Noise Level (Zero Noise), typical figures

		M2p.591x, DN2.591-xx, DN6.591-xx digital filtering active									
Input Range	±200 mV	±500 mV	±5 V	±10 V							
Voltage resolution	6.1 μV	15.3 μV	30.5 μV	61.0 μV	152.6 μV	305.2 μV					
50 Ω	<1.5 LSB <10 μV	<1.2 LSB <19 µV	<1.0 LSB <31 µV	<3.0 LSB <183 μV	<1.6 LSB <245 μV	<1.2 LSB <367 μV					
1 ΜΩ	<1.5 LSB <10 μV	<1.2 LSB <19 μV	<1.0 LSB <31 µV	<3.0 LSB <183 μV	<1.6 LSB <245 μV	<1.2 LSB <367 μV					
1 / 7 142 64	II	I .	I ·		1	1					
1 7712		1	M2p.592x, DN2.5	92-xx, DN6.592-x	x	1					
Input Range	±200 mV	±500 mV	M2p.592x, DN2.5	92-xx, DN6.592-x ±2 V	x ±5∨	±10 V					
						±10 V 305.2 μV					
Input Range	±200 mV	±500 mV	±1	±2 V	±5 V						

	II	M2p.593x, DN2.593-xx, DN6.593-xx, DN2.803-xx, DN2.8						
Input Range	±200 mV	±200 mV ±500 mV		±1 ±2 V		±10 V		
Voltage resolution	6.1 μV	15.3 μV	30.5 μV	61.0 μV	152.6 μV	305.2 μV		
50 Ω	<6.0 LSB <37 μV	<5.0 LSB <77 μV	<4.5 LSB <138 μV	<6.5 LSB <397 μV	<5.0 LSB <763 μV	<4.5 LSB <1.4 mV		
1 ΜΩ	<6.5 LSB <40 μV	<5.0 LSB <77 μV	<4.5 LSB <138 μV	<6.5 LSB <397 μV	<5.0 LSB <763 μV	<4.5 LSB <1.4 mV		
			M2p	594x				
Input Range	±200 mV	±500 mV	±l	±2 V	±5 V	±10 V		
Voltage resolution	6.1 μV	15.3 μV	30.5 μV	61.0 μV	152.6 μV	305.2 μV		
50 Ω	<7.0 LSB <43 μV	<5.5 LSB <85 µV	<4.5 LSB <138 µV	<7.5 LSB <458 µV	<5.5 LSB <840 µV	<4.5 LSB <1.4 mV		
1 ΜΩ	<7.5 LSB <46 µV	<5.8 LSB <89 µV	<4.5 LSB <138 µV	<7.7 LSB <470 μV	<5.8 LSB <886 µV	<4.5 LSB <1.4 mV		
	II	M2p.596x, DN	12.596-xx, DN6.59	96-xx, DN2.806-x	x, DN2.816-xx			
Input Range	±200 mV	±500 mV	±l	±2 V	±5 V	±10 V		
Voltage resolution	6.1 μV	15.3 μV	30.5 μV	61.0 μV	152.6 μV	305.2 μV		
50 Ω	<9.0 LSB <55μV	<6.8 LSB <104 µV	<5.5 LSB <168 μV	<9.0 LSB <550 μV	<6.8 LSB <1.1 mV	<5.5 LSB <1.7 mV		
1 ΜΩ	<9.5 LSB <58µV	<7.1 LSB <109 μV	<5.5 LSB <168 μV	<9.5 LSB <580 μV	<7.1 LSB <1.1 mV	<5.5 LSB <1.7 mV		

Dynamic Parameters, typical figures

		M2p.591x, DN2.591-xx, DN6.591-xx digital filtering active							
Test - sampling rate				5 M	IS/s				
Input Range	±2	00 mV	±50	0 mV	±1	V	±2	±2 V	
Test Signal Frequency	20 kH:	z 1 MHz	20 kHz	1 MHz	20 kHz	1 MHz	20 kHz	1 MHz	
SNR (typ)	≥ 83.5 dł	≥ 82.8 dB	≥ 85.0 dB	≥ 84.9 dB	≥ 86.2 dB	≥ 85.7 dB	n.a.	n.a.	
THD (typ)	(≤ 84.4 dB	≤ -93.5 dB	(≤ 86.3 dB)	≤-93.1 dB	(≤ 86.9 dB)	≤-91.8 dB	n.a.	n.a.	
SFDR (typ), excl. harm.	≥ 103.0 dł	≥ 103.0 dB	\geq 104.0 dB	≥ 107.0 dB	\geq 103.0 dB	$\geq 107.0 \text{ dB}$	n.a.	n.a.	
ENOB (based on SNR)	≥ 13.6 LSE	≥ 13.4 LSB	\geq 13.8 LSB	\geq 13.8 LSB	\geq 14.0 LSB	\geq 13.9 LSB	n.a.	n.a.	
ENOB (based on SINAD)	≥ 13.1 LSE	\geq 13.4 LSB	$\geq 13.4 \text{ LSB}$	\geq 13.7 LSB	\geq 13.6 LSB	$\geq 13.8 \ \text{LSB}$	n.a.	n.a.	

		M2p.591x, DN2.591·xx, DN6.591·xx digital filtering active						
Test - sampling rate	3 M	S/s	1 M	IS/s	500	kS/s	200 kS/s	
Input Range	±200 mV	±1V	±200 mV	±1 V	±200 mV	±1V	±200 mV	±1 V
Test Signal Frequency	20	κHz	20 kHz		20 kHz		20 kHz	
Input bandwidth due to digital filter	1.2/	٨Hz	400 kHz		200 klHz		80 kHz	
SNR (typ)	≥ 85.3 dB	≥ 86.6 dB	≥ 87.2 dB	\geq 89.1 dB	≥ 86.2 dB	≥ 89.7 dB	≥ 86.4 dB	\geq 89.4 dB
THD (typ)	(≤ 88.9 dB)	(≤ -88.5 dB)	(≤ 86.4 dB)	(≤-88.6 dB)	(≤ 86.9 dB)	(≤-90.8 dB)	(≤ 89.7 dB)	(≤-93.8 dB)
SFDR (typ), excl. harm.	$\geq 103.1 \text{ dB}$	\geq 103.6 dB	\geq 102.8 dB	\geq 105.6 dB	$\geq 103.1 \text{ dB}$	$\geq 103.1 \text{ dB}$	≥ 103.1 dB	$\geq 103.5 \text{ dB}$
ENOB (based on SNR)	\geq 13.9 LSB	\geq 14.1 LSB	$\geq 14.2 \text{ LSB}$	$\geq 14.5 \text{ LSB}$	\geq 14.0 LSB	\geq 14.6 LSB	\geq 14.1 LSB	\geq 14.6 LSB
ENOB (based on SINAD)	$\geq 13.5 \text{ LSB}$	$\geq 13.7 \; \text{LSB}$	\geq 13.6 LSB	\geq 14.0 LSB	\geq 13.6 LSB	$\geq 14.2 \ \text{LSB}$	\geq 13.8 LSB	\geq 14.3 LSB

(20 kHz measurements are missing the correct bandpass filter and therefore show a larger THD that is coming from the generator)

		M2p.592x, DN2.592-xx, DN6.592-xx							
Test - sampling rate				20 N	NS/s				
Input Range	±200 mV		±500 m	V	±1 V		±2 V		
Test Signal Frequency	1 MHz	n.a.	1 MHz	n.a.	1 MHz	n.a.	1 MHz	n.a.	
SNR (typ)	≥77.2 dB	n.a.	≥79.8 dB	n.a.	≥ 81.0 dB	n.a.	≥75.0 dB	n.a.	
THD (typ)	≤ 92.5 dB	n.a.	≤ -92.8 dB	n.a.	≤ -89.5 dB	n.a.	≤ -76.5 dB	n.a.	
SFDR (typ), excl. harm.	≥ 103.0 dB	n.a.	\geq 103.0 dB	n.a.	\geq 105.0 dB	n.a.	≥ 93.0 dB	n.a.	
ENOB (based on SNR)	≥ 12.5 LSB	n.a.	\geq 13.0 LSB	n.a.	\geq 13.2 LSB	n.a.	\geq 12.2 LSB	n.a.	
ENOB (based on SINAD)	≥ 12.5 LSB	n.a.	≥ 13.0 LSB	n.a.	≥ 13.1 LSB	n.a.	≥ 11.8 LSB	n.a.	

	11	M2p.593x, DN2.593-xx, DN6.593-xx, DN2.803-xx, DN2.813-xx								
Test - sampling rate		40 MS/s								
Input Range		±200	±200 mV ±500 mV ±1 ±2 V							
Test Signal Frequency		1 MHz	1 MHz 10 MHz 1 MHz 10 MHz 1 MHz 10		10 MHz	1 MHz	10 MHz			
SNR (typ)		≥73.0 dB	≥72.6 dB	≥74.6 dB	\geq 74.4 dB	≥75.3 dB	≥75.3 dB	≥71.9 dB	≥71.8 dB	
THD (typ)		\leq -87.8 dB	\leq -67.0 dB	≤ -89.0 dB	\leq -67.0 dB	≤-86.1 dB	\leq -67.2 dB	≤ -79.0 dB	\leq -67.2 dB	
SFDR (typ), excl. harm.		\geq 98.3 dB	\geq 96.5 dB	≥98.8 dB	\geq 99.5 dB	\geq 101.0 dB	$\geq 100.0 \text{ dB}$	≥ 81.7 dB	\geq 91.3 dB	
ENOB (based on SNR)		≥ 11.8 LSB ≥ 11.8 LSB ≥ 12.1 LSB ≥ 12.0 LSB ≥ 12.2 LSB ≥ 12.2 LSB ≥ 11.7 LSB ≥ 11								
ENOB (based on SINAD)		$\geq 11.8 \text{ LSB}$	$\geq 10.7 \text{ LSB}$	\geq 12.1 LSB	$\geq 10.7 \; \text{LSB}$	\geq 12.2 LSB	$\geq 10.8 \ \text{LSB}$	\geq 11.6 LSB	$\geq 10.7 \; \text{LSB}$	

]	M2p.594x								
Test - sampling rate			80 MS/s							
Input Range		±200	±200 mV ±500 mV ±1					±2	V	
Test Signal Frequency		1 MHz	10 MHz	1 MHz	10 MHz	1 MHz	10 MHz	1 MHz	10 MHz	
SNR (typ)		≥70.6 dB	≥70.5 dB	≥72.9 dB	≥72.8 dB	≥74.2 dB	≥74.2 dB	≥ 69.8 dB	≥69.8 dB	
THD (typ)		≤ -87.3 dB	≤ -76.9 dB	≤ -86.6 dB	\leq -76.3 dB	\leq -84.8 dB	≤ -70.1 dB	≤ -79.0 dB	≤-77.9 dB	
SFDR (typ), excl. harm.		\geq 97.5 dB	$\geq 105.0 \; dB$	$\geq 101.0 \text{ dB}$	\geq 104.0 dB	\geq 100.0 dB	$\geq 100.0 \ dB$	\geq 96.9 dB	\geq 96.6 dB	

		M2p.594x						
ENOB (based on SNR)	≥ 11.4 LSB	≥ 11.4 LSB	≥ 11.8 LSB	≥ 11.8 LSB	\geq 12.0 LSB	\geq 12.0 LSB	\geq 11.2 LSB	\geq 11.2 LSB
ENOB (based on SINAD)	≥ 11.4 LSB	$\geq 11.3 \text{ LSB}$	\geq 11.8 LSB	$\geq 11.5 \text{ LSB}$	$\geq 12.0 \; \text{LSB}$	$\geq 11.1 \text{ LSB}$	$\geq 11.2 \text{ LSB}$	\geq 11.2 LSB

		M2p.596x, DN2.596-xx, DN6.596-xx, DN2.806-xx, DN2.816-xx										
Test - sampling rate		125 MS/s										
Input Range		±200 mV ±500 mV ±1 V ±2 V										
Test Signal Frequency	1 MHz	10 MHz	40 MHz	1 MHz	10 MHz	40 MHz	1 MHz	10 MHz	40 MHz	1 MHz	10 MHz	40 MHz
SNR (typ)	≥ 68.1 dB	≥66.2 dB	≥ 65.5 dB	≥ 70.5 dB	≥ 69.9 dB	≥ 68.7 dB	≥73.3 dB	≥72.7 dB	≥71.5 dB	≥67.8 dB	≥65.8 dB	≥ 65.1 dB
THD (typ)	≤ -81.5 dB	\leq -74.5 dB	\leq -53.7 dB	≤-82.5 dB	≤ -77.6 dB	\leq -55.3 dB	\leq -83.3 dB	\leq -68.9 dB	\leq -57.3 dB	≤-78.0 dB	≤ -75.6 dB	\leq -53.7 dB
SFDR (typ), excl. harm.	\geq 95.0 dB	\geq 93.4 dB	\geq 92.3 dB	≥ 97.5 dB	\geq 96.8 dB	\geq 94.0 dB	\geq 98.5 dB	\geq 98.1 dB	\geq 96.4 dB	≥91.5 dB	\geq 89.0 dB	\geq 89.0 dB
ENOB (based on SNR)	\geq 11.0 LSB	$\geq 10.7 \text{ LSB}$	$\geq 10.6 \text{ LSB}$	\geq 11.4 LSB	$\geq 11.3 \text{ LSB}$	$\geq 11.1 \text{ LSB}$	≥ 11.8 LSB	$\geq 11.8 \text{ LSB}$	≥ 11.6 LSB	\geq 11.0 LSB	$\geq 10.6 \text{ LSB}$	$\geq 10.5 \text{ LSB}$
ENOB (based on SINAD)	$\geq 11.0~\text{LSB}$	$\geq 10.6 \text{ LSB}$	\geq 8.6 LSB	≥ 11.4 LSB	\geq 11.1 LSB	\geq 8.9 LSB	≥ 11.7 LSB	$\geq 11.0 \; \text{LSB}$	$\ge 9.2 \text{ LSB}$	$\geq 10.9 \text{ LSB}$	$\geq 10.6 \; \text{LSB}$	\geq 8.6 LSB

Dynamic parameters are measured at ± 1 V input range (if no other range is stated) and 50 Ω termination with the samplerate specified in the table. Measured parameters are averaged 20 times to get typical values. Test signal is a pure sine wave generated by a signal generator and a matching bandpass filter. Amplitude is >99% of FSR. SNR and RMS noise parameters may differ depending on the quality of the used PC. SNR = Signal to Noise Ratio, THD = Total Harmonic Distortion, SFDR = Spurious Free Dynamic Range, SINAD = Signal Noise and Distortion, ENOB = Effective Number of Bits.

Connectors

Analog Inputs Trigger Input Clock/Reference Clock Input Clock Output, Multi-Purpose X0 Multi-Purpose I/O X1, X2, X3

Programmable Direction

9 mm BNC female (one for each single-ended input) Cable-Type: Cab-9m-xx-xx

9 mm BNC female 9 mm BNC female 9 mm BNC female 9 mm BNC female anded input) Cable-Type: Cab-9m-xx-xx Cable-Type: Cab-9m-xx-xx

Cable-Type: Cab-9m-xx-xx Cable-Type: Cab-9m-xx-xx Cable-Type: Cab-9m-xx-xx

hybridNETBOX Technical Data - Arbitrary Waveform Generator

Analog Outputs

Resolution D/A Interpolation Output amplitude	software programmable	16 bit no interpolation 653x and 656x:	±1 mV up to ±3 V in 1 mV steps into 50 Ω termination
		654x and 657x:	(resulting in ±2 mV up to ±6 V in 2mV steps into high impedance loads) ±1 mV up to ±6 V in 1 mV steps into 50 Ω termination (resulting in ±2 mV up to ±12 V in 2mV steps into high impedance loads)
		Note: Gain values	below ±300 mV into 50 Ω are reduced by digital scaling of the samples
Output Amplifier Path Selection	automatically by driver	Low Power path:	Selected Gain of ±1 mV to ±960 mV (into 50 Ω)
		High Power path:	653x and 656x: Selected Gain of \pm 940 mV to \pm 3 V (into 50 Ω) 654x and 657x: Selected Gain of \pm 940 mV to \pm 6 V (into 50 Ω)
Output Amplifier Setting Hysteresis	automatically by driver	output is using high	/ (if output is using low power path it will switch to high power path at 960 mV. If power path it will switch to low power path at 940 mV)
Output amplifier path switching time			bled while switching)
Output offset	software programmable	Low Power path:	±960 mV in 1 mV steps into 50 Ω (±1920 mV in 2 mV steps into 1 M Ω)
		High Power path:	$\begin{array}{l} 653x \text{ and } 656x: \pm 3 \text{ V in 1 mV steps into } 50 \ \Omega \ (\pm 6 \text{V in 2 mV steps into 1 M}\Omega) \\ 654x \text{ and } 657x: \pm 6 \text{ V in 1 mV steps into } 50 \ \Omega \ (\pm 12 \text{V in 2 mV steps into 1 M}\Omega) \end{array}$
Filters	software programmable	One of 4 different f	filters (refer to "Bandwidth and Filters" section)
DAC Differential non linearity (DNL)	DAC only	±2.0 LSB typical	
DAC Integral non linearity (INL)	DAC only	±4.0 LSB typical	
Output resistance		50 Ω	
Minimum output load			0 Ω (short circuit safe by design) 0 Ω (short circuit safe by hardware supervisor, outputs will turn off)
Max output swing in 50 Ω		654x and 657x: ±	3.0 V (offset + amplitude) 6.0 V (offset + amplitude)
Max output swing in 1 $M\Omega$		654x and 657x: ±	6.0 V (offset + amplitude) 12.0 V (offset + amplitude)
Max output current		653x and 656x: ± 654x and 657x: ±	60 mA
Slewrate (using Filter 0)		653x and 656x: H	to 900 mV): 250 mV/ns igh power path (0 to 3000 mV): 850 mV/ns igh power path (0 to 6000 mV): TBD
Rise/Fall time 10% to 90% square wave			3 V square wave: 5.3 ns 3 V square wave: TBD
Crosstalk @ 1 MHz signal ±3 V	1 to 4 ch standard AWG	95 dB (M2p.6530,	, M2p.6531, M2p.6536, M2p.6560, M2p.6561, M2p.6566)
Crosstalk @ 1 MHz signal ±3 V	8 channel AWG	84 dB (M2p.6533,	M2p.6568)
Crosstalk @ 1 MHz signal ±6 V	1 to 4 ch high-voltage AWG	99 dB (M2p.6540,	, M2p.6541, M2p.6546, M2p.6540, M2p.6541, M2p.6546)
Output accuracy		±1 mV ±0.5 % of p	programmed output amplitude ± 0.1 % of programmed output offset

Trigger

Available trigger modes software programmable External, Software, Pulse, Or/And, Delay Rising edge, falling edge or both edges Trigger edge software programmable Trigger pulse width software programmable 0 to [4G - 1] samples in steps of 1 sample Trigger delay software programmable 0 to [4G - 1] samples in steps of 1 samples Trigger holdoff (for Multi, Gate) software programmable 0 to [4G - 1] samples in steps of 1 samples Multi, Gate: re-arming time < 24 samples (+ programmed holdoff) Trigger to Output Delay 63 sample clocks + 7 ns 16 up to [installed memory / number of active channels] samples in steps of 8 Memory depth software programmable Multiple Replay segment size software programmable 8 up to [installed memory / number of active channels] samples in steps of 8 External trigger accuracy 1 sample External trigger Ext X1, X2, X3 Single level comparator External trigger type 3.3V LVTTL logic inputs For electrical specifications refer to "Multi Purpose I/O lines" section. External trigger impedance software programmable 50 Ω / 5 kΩ External trigger input level ±5 V (5 kΩ), ±2.5 V (50 Ω), External trigger over voltage protection ±20 V (5 kΩ), 5 Vrms (50 Ω) External trigger sensitivity (minimum required signal swing) 200 mVpp External trigger level ±5 V in steps of 1 mV software programmable External trigger bandwidth 50 Ω n.a. DC to 125 MHz $5~\mathrm{k}\Omega$

Minimum external trigger pulse width

DC to 400 MHz DC to 300 MHz ≥ 2 samples

≥ 2 samples

Multi Purpose I/O lines

Number of multi purpose output lines Number of multi purpose input/output lines

Multi Purpose line Input: available signal types Input: signal levels Input: impedance Input: maximum voltage level Input: maximum bandwidth Output: available signal types

Output: impedance Output: drive strength Output: type / signal levels Output: update rate (synchronous modes)

Sequence Replay Mode

Number of sequence steps

Minimum segment size

Maximum segment size

Special Commands

Sequence Step Commands

Limitations for synchronized products

Loop Count

Number of memory segments

one, named X0 three, named X1, X2, X3

xo

software programmable

software programmable

n.a. n.a. n.a. n.a. Run, Arm-, Trigger-Output, Marker-Output, Synchronous Digital-Out, Asynchronous Digital-Out ADC Clock Output, Asynchronous Digital-In, Logic trigger 3.3 V LVTTL 10 k Ω to 3.3 V -0.5 V to +4.0 V 125 MHz Run, Arm, Trigger-Output, Marker-Output, Synchronous Digital-Out, Asynchronous Digital-Out,

X1, X2, X3

50 Ω Capable of driving 50 Ω loads, maximum drive strength ±48 mA 3.3V LVTTL, TTL compatible for high impedance loads sampling clock

 software programmable
 1 up to 4096 (sequence steps can be overloaded at runtime)

 software programmable
 2 up to 64k (segment data can be overloaded at runtime)

 software programmable
 32 samples in steps of 8 samples.

 software programmable
 512 MS / active channels / number of sequence segments (round up to the next power of two)

 software programmable
 1 to (1M - 1) loops

 software programmable
 Loop for #Loops, Next, Loop until Trigger, End Sequence

 software programmable
 Data Overload at runtime, sequence steps overload at runtime, readout current replayed sequence step

 Software commands changing the sequence as well as "Loop until trigger" are not synchronized between cards. This also applies to multiple AWG modules in a generatorNETBOX.

<u>Clock</u>

Clock Modes	software programmable	internal PLL, external clock, external reference clock, sync
Internal clock range (PLL mode)	software programmable	see "Clock Limitations" table below
Internal clock accuracy	after warm-up	≤ ±1.0 ppm (at time of calibration in production)
Internal clock aging		≤ ±0.5 ppm / year
PLL clock setup granularity (int. or ext. reference)		1 Hz
External reference clock range	software programmable	128 kHz up to 125 MHz
Direct external clock to internal clock delay		4.3 ns
Direct external clock range		see "Clock Limitations and Bandwidth" table below
External clock type		Single level comparator
External clock input level		±5 V (5 kΩ), ±2.5 V (50 Ω),
External clock input impedance	software programmable	50 Ω / 5 kΩ
External clock over voltage protection		±20 V (5 kΩ), 5 Vrms (50 Ω)
External clock sensitivity (minimum required signal swing)		200 mVpp
External clock level	software programmable	±5 V in steps of 1mV
External clock edge		rising edge used
External reference clock input duty cycle		45% - 55%
Clock output electrical specification		Available via Multi Purpose output XO. Refer to "Multi Purpose I/O lines" section.
Synchronization clock multiplier "N" for different clocks on synchronized cards	software programmable	N being a multiplier (1, 2, 3, 4, 5, Max) of the card with the currently slowest sampling clock. The card maximum (see "Clock Limitations and Bandwidth" table below) must not be exceeded.
Channel to channel skew on one card		< 200 ps (typical)
Skew between star-hub synchronized cards		TBD

Clock Limitations

	M2p.653x DNx.653-xx M2p.654x DNx.654-xx DNx.803-xx DNx.813-xx	M2p.656x DNx.656-xx M2p.657x DNx.657-xx DNx.806-xx DNx.816-xx
max internal clock (non-synchronized cards)	40 MS/s	125 MS/s
min internal clock (non-synchronized cards)	1 kS/s	1 kS/s
max internal clock (cards synchronized via star-hub)	40 MS/s	125 MS/s
min internal clock (cards synchronized via star-hub)	128 kS/s	128 kS/s
max direct external clock	40 MS/s	125 MS/s
min direct external clock	DC	DC
min direct external clock LOW time	4 ns	4 ns
min direct external clock HIGH time	4 ns	4 ns

Bandwidth and Filters

	Filter	- 3dB bandwidth	Filter characteristic
Analog bandwidth does not include Sinc response of DAC	Filter 0	70 MHz	third-order Butterworth
	Filter 1	20 MHz	fifth-order Butterworth
	Filter 2	5 MHz	fourth-order Bessel
	Filter 3	1 MHz	fourth-order Bessel

Dynamic Parameters

	M2p.	653x/DNx.65	3-xx/DNx.803-xx		
Test - Samplerate	40 M	AS/s	40 MS/s		
Output Frequency	800	kHz	4 N	٨Hz	
Output Level in 50 Ω	±900mV	±3000mV	±900mV	±3000mV	
Used Filter	1 MHz 5 /			٨Hz	
NSD (typ)	-142 dBm/Hz	-132 dBm/Hz	-142 dBm/Hz	-132 dBm/Hz	
SNR (typ)	90.7 dB	91.1 dB	83.7 dB	84.1 dB	
THD (typ)	-74.0 dB	-74.0 dB	-70.5 dB	-70.5 dB	
SINAD (typ)	73.9 dB	73.9 dB	69.8 dB	69.8 dB	
SFDR (typ), excl harm.	97.0 dB	95.0 dB	88.0 dB	88.0 dB	
enob (sinad)	12.0	12.0	11.3	11.3	
enob (SNR)	14.7	14.8	13.5	13.6	

	M2p.654x/DNx.654-xx/DNx.813-xx							
Test - Samplerate	40 M	AS/s	40 MS/s					
Output Frequency	800	kHz	4 N	١Hz				
Output Level in 50 Ω	±900mV	±6000mV	±900mV	±6000mV				
Used Filter	1 A	٨Hz	5 MHz					
NSD (typ)	-138 dBm/Hz	-129 dBm/Hz	-142 dBm/Hz	-126 dBm/Hz				
SNR (typ)	86.7 dB	88.1 dB	83.7 dB	84.2 dB				
THD (typ)	-74.0 dB	-74.0 dB	-74.0 dB	-74.0 dB				
SINAD (typ)	73.8 dB	73.8 dB	73.6 dB	73.6 dB				
SFDR (typ), excl harm.								
enob (sinad)	12.0	12.0	11.9	11.9				
enob (SNR)	14.1	14.3	13.6	13.7				

Test - Samplerate	125	MS/s	125	MS/s	125 MS/s	
Output Frequency	800	800 kHz		٨Hz	167	MHz
Used Filter	1 ٨	1 MHz		5 MHz		٨Hz
Output Level in 50 Ω	±900mV	±3000mV	±900mV	±3000mV	±900mV	±3000mV
NSD (typ)	-142 dBm/Hz	-132 dBm/Hz	-142 dBm/Hz	-132 dBm/Hz	-142 dBm/Hz	-132 dBm/Hz
SNR (typ)	90.7 dB	91.1 dB	83.7 dB	84.1 dB	77.7 dB	78.1 dB
THD (typ)	-74.0 dB	-74.0 dB	-70.5 dB	-70.5 dB	-66.0 dB	-61.9 dB
SINAD (typ)	73.9 dB	73.9 dB	69.8 dB	69.8 dB	65.7 dB	60.9 dB
SFDR (typ), excl harm.	97.0 dB	95.0 dB	88.0 dB	88.0 dB	90.0 dB	89.0 dB
ENOB (SINAD)	12.0	12.0	11.3	11.3	10.6	9.8
ENOB (SNR)	14.7	14.8	13.5	13.6	12.5	12.6

		M2p.657x/DNx.657-xx/DNx.816-xx					
Test - Samplerate	125	125 MS/s		125 MS/s		MS/s	
Output Frequency	800	800 kHz		٨Hz	167	٨Hz	
Used Filter	1 ٨	1 MHz		5 MHz		٨Hz	
Output Level in 50 Ω	±900mV	±6000mV	±900mV ±6000mV		±900mV	±6000mV	
NSD (typ)	-138 dBm/Hz	-129 dBm/Hz	-142 dBm/Hz	-126 dBm/Hz	-142 dBm/Hz	-127 dBm/Hz	
SNR (typ)	86.7 dB	88.1 dB	83.7 dB	84.2 dB	77.7 dB	79.1 dB	
THD (typ)	-74.0 dB	-74.0 dB	-74.0 dB	-74.0 dB	-70.5 dB	-63.1 dB	
SINAD (typ)	73.8 dB	73.8 dB	73.6 dB	73.6 dB	69.7 dB	63.0 dB	
SFDR (typ), excl harm.							
enob (sinad)	12.0	12.0	11.9	11.9	11.3	10.2	
enob (SNR)	14.1	14.3	13.6	13.7	12.6	12.8	

THD and SFDR are measured at the given output level and 50 Ohm termination with a high resolution M3i.4860/M4i.4450-x8 data acquisition card and are calculated from the spectrum. Noise Spectral Density is measured with built-in calculation from an HP E4401B Spectrum Analyzer. All available D/A channels are activated for the tests. SNR and SFDR figures may differ depending on the quality of the used PC. NSD = Noise Spectral Density, THD = Total Harmonic Distortion, SFDR = Spurious Free Dynamic Range.

hybridNETBOX Technical Data - General

Option digitizerNETBOX/generatorNETBOX embedded server (DN2.xxx-Emb, DN6.xxx-Emb)

CPU	Intel Quad Core 2 GHz	
System memory	4 GByte RAM	
System data storage	Internal 128 GByte SSD	
Development access	Remote Linux command shell (ssh), no graphical interface (GUI) available	
Accessible Hardware	Full access to Spectrum instruments, LAN, front panel LEDs, RAM, SSD	
Integrated operating system	OpenSuse 12.2 with kernel 4.4.7.	
Internal PCIe connection	DN2.20, DN2.46, DN2.47, DN2.49, DN2.59, DN2.60, DN2.65	PCle x1, Gen1
	DN6.46, DN6.49, DN6.59, DN6.65	
	DN2.22, DN2.44, DN2.66	PCle x1, Gen2
	DN6.22, DN6.44, DN6.66	

Ethernet specific details

	Standard RJ45		
	Auto Sensing: GBit Ethernet, 100BASE-T,	I OBASE-T	
programmable	DHCP (IPv4) with AutoIP fall-back (169.2	4.x.y), fixed IP (IPv4)	
	DN2.20, DN2.46, DN2.47, DN2.49, D	N2.60 up to 70 M	AByte/s
	DN6.46, DN6.49		
	DN2.59, DN2.65, DN2.22, DN2.44, D	V2.66 up to 100	MByte/s
	DN6.59, DN6.65, DN6.22, DN6.44, D	16.66	
	Webserver: 80 VISA Discovery Protocol: 111, 9757 Spectrum Remote Server: 1026, 5025		
	programmable	Auto Sensing: GBit Ethernet, 100BASE-T, programmable DHCP (IPv4) with AutoIP fall-back (169.25 DN2.20, DN2.46, DN2.47, DN2.49, DN DN6.46, DN6.49 DN2.59, DN2.65, DN2.22, DN2.44, DN DN6.59, DN6.65, DN6.22, DN6.44, DN Webserver: 80 VISA Discovery Protocol: 111, 9757	Auto Sensing: GBit Ethernet, 100BASET, 10BASET programmable DHCP (IPv4) with AutoIP fall-back (169.254.x.y), fixed IP (IPv4) DN2.20, DN2.46, DN2.47, DN2.49, DN2.60 up to 70 N DN6.46, DN6.49 DN2.59, DN2.65, DN2.22, DN2.44, DN2.66 up to 100 DN6.59, DN6.65, DN6.22, DN6.44, DN6.66 Webserver: 80 mDNS Daemon: 535 VISA Discovery Protocol: 111, 9757 UPNP Daemon: 1900

Power connection details

Mains AC power supply AC power supply connector Power supply cord Input voltage: 100 to 240 VAC, 50 to 60 Hz IEC 60320-1-C14 (PC standard coupler) power cord included for Schuko contact (CEE 7/7)

Serial connection details (DN2.xxx with hardware **> V11**)

Serial connection (RS232)

For diagnostic purposes only. Do not use, unless being instructed by a Spectrum support agent.

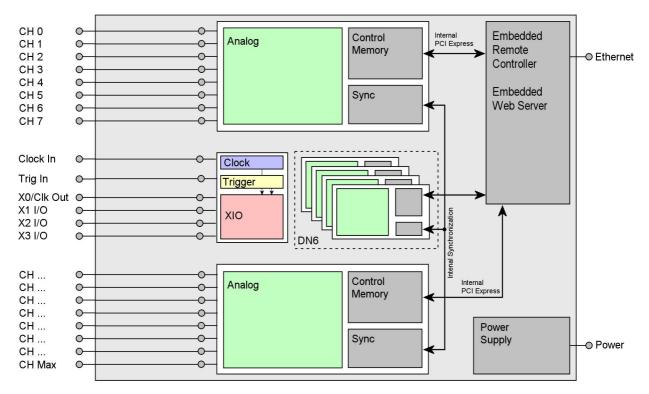
Certification, Compliance, Warranty

EMC Immunity EMC Emission Product warranty Software and firmware updates Compliant with CE Mark Compliant with CE Mark 5 years starting with the day of delivery Life-time, free of charge

DN2 specific Technical Data

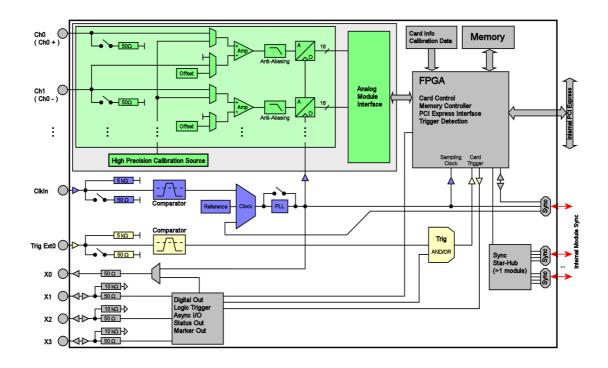
Environmental and Physical Details DN2.xxx

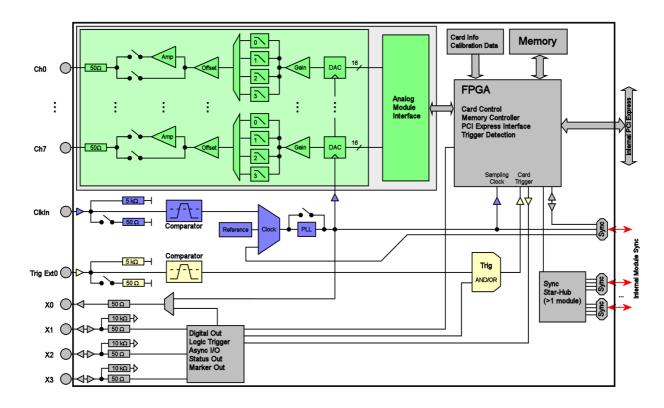
Dimension of Chassis without connectors or bum	pers LxWxH	366 mm x 267 mm x 87 mm
Dimension of Chassis with 19" rack mount optio	n LxWxH	366 mm x 482.6 mm x 87 mm (2U height)
Weight (1 internal acquisition/generation modul	e)	6.3 kg, with rack mount kit: 6.8 kg
Weight (2 internal acquisition/generation modul	es)	6.7 kg, with rack mount kit 7.2 kg
Warm up time		20 minutes
Operating temperature		0°C to 40°C
Storage temperature		-10°C to 70°C
Humidity		10% to 90%
Dimension of packing (single DN2)	L x W x H	470 mm x 390 mm x 180 mm
Volume weight of Packing (single DN2)		7.0 kgs


Power Consumption

	230 VAC	12 VDC		24 VDC
2 + 2 channel versions				
4 + 4 channel versions				
8 + 8 channel versions				
	1	I	I	1

<u>MTBF</u>


MTBF


Block diagram of hybridNETBOX DN2

• The number of maximum channels and internal digitizer modules and existance of a synchronization Star-Hub is model dependent.

Block diagram of Digitizer Module hybridNETBOX DN2.80x/81x

Block diagram of AWG Module hybridNETBOX DN2.80x/81x

Order Information

The hybridNETBOX is equipped with a large internal memory for data storage and data replay. The internal digitizer supports standard acquisition (Scope), FIFO acquisition (streaming), Multiple Recording, Gated Sampling, ABA mode and Timestamps. Then internal AWG supports standard replay, FIFO replay (streaming), Multiple Replay, Gated Replay, Continuous Replay (Loop), Single-Restart as well as Sequence. Operating system drivers for Windows/Linux 32 bit and 64 bit, drivers and examples for C/C++, IVI (Scope, Digitizer and Function Generator class), LabVIEW (Windows), MATLAB (Windows and Linux), .NET, Delphi, Java, Python and a Professional license of the oscilloscope software SBench 6 are included.

The system is delivered with a connection cable meeting your countries power connection. Additional power connections with other standards are available as option.

		Inputs		Outputs		
Order no.	Memory	Single-Ended	Differential	Channels	Level@50 Ω	Level@1 $M\Omega$
DN2.813-02	2 x 512 MSamples	2 x 40 MS/s	2 x 40 MS/s	2 x 40 MS/s	±6 V	±12 V
DN2.813-04	2 x 512 MSamples	8 x 40 MS/s	4x 40 MS/s	8 x 40 MS/s	±6 V	±12 V
DN2.803-08	2 x 512 MSamples	8 x 40 MS/s	4 x 40 MS/s	8 x 40 MS/s	±3 V	±6 V
DN2.816-02	2 x 512 MSamples	2 x 125 MS/s	2 x 125 MS/s	2 x 125 MS/s	±6 V	±12 V
DN2.816-04	2 x 512 MSamples	4 x 125 MS/s	4 x 125 MS/s	4 x 125 MS/s	±6 V	±12 V
DN2.806-08	2 x 512 MSamples	4 x 125 MS/s 8 x 80 MS/s	4 x 125 MS/s	4 x 125 MS/s 8 x 80 MS/s	±3 V	±6 V

hybridNETBOX DN2 - Ethernet/LXI Interface

Options

Order no.	Option
DN2.xxx-Rack	19" rack mounting set for self mounting
DN2.xxx-Emb	Extension to Embedded Server: CPU, more memory, SSD. Access via remote Linux secure shell (ssh)
DN2.xxx-DC12	12 VDC internal power supply. Replaces AC power supply. Accepts 9 V to 18 V DC input. Screw terminals.
DN2.xxx-DC24	24 VDC internal power supply. Replaces AC power supply. Accepts 18 V to 36 V DC input. Screw terminals
DN2.xxx-BTPWR	Boot on Power On: the digitizerNETBOX/generatorNETBOX/hybridNETBOX automatically boots if power is switched on.

Calibration

Order no.	Option
DN2.xxx-Recal	Recalibration of complete digitizerNETBOX/generatorNETBOX/hybridNETBOX DN2 including calibration protocol

BNC Cables

The standard adapter cables are based on RG174 cables and have a nominal attenuation of 0.3 dB/m at 100 MHz.

for Connections	Connection	Length	to SMA male	to SMA female	to BNC male	to SMB female	
All	BNC male	80 cm	Cab-9m-3mA-80	Cab-9m-3fA-80	Cab-9m-9m-80	Cab-9m-3f-80	
All	BNC male	200 cm	Cab-9m-3mA-200	Cab-9m-3fA-200	Cab-9m-9m-200	Cab-9m-3f-200	

Technical changes and printing errors possible

Sench, digitizerNETBOX and generatorNETBOX are registered trademarks of Spectrum Instrumentation GmbH. Microsoft, Visual C++, Windows, Windows NT, Window 2000, Windows XP, Windows VIsta, Windows 7, Windows 8 and Windows 10 are trademarks/registered trademarks of Microsoft Croporation. LabVIEW, DASYLab, Diadem and LabWindows/CVI are trademark/registered trademarks of National Instruments Corporation. MatNaB is a trademark/registered trademark of The Mathworks, Inc. Delphi and C++Builder are trademarks/registered trademarks of Sensorial Corporation. LabVIEW, DASYLab, Diadem and LabWindows/CVI are trademark/registered trademarks of National Instruments are trademarks/registered trademarks of National Instruments. Corporation. MatNaB is a trademark/registered trademarks of National Instruments of the VI Construint. PICNG and CEP. Pice 1 and VEE, VEE Pro and VEE OneLab are trademarks/registered trademarks of Keysight Technologies, Inc. FlexPro is a registered trademark of Weisang GmbH & Co. KG. PCIe, PCI Express and PCIX and PCIX and PCIXGIG are trademarks of PCIXIIs a registered trademark of the VI Industrial Computation. AMD, Opteron, Sempron, Phenom, FX, Ryzen and EPYC are trademarks and/or registered trademarks of Intel Corporation. AMD, Opteron, Sempron, Phenom, FX, Ryzen and EPYC are trademarks and/or registered trademarks of NVIDIA Corporation.